浅谈数据降维

Nov 30, 2019

为什么要进行降维?

所谓降维,即用一组个数为 d 的向量 Zi 来代表个数为 D 的向量 Xi 所包含的有用信息,其中 d<D,通俗来讲,即将高维度下降至低维度;将高维数据下降为低维数据。

通常,我们会发现大部分数据集的维度都会高达成百乃至上千,而经典的 MNIST数据集 ,其维度都是 64。

但在实际应用中,我们所用到的有用信息却并不需要那么高的维度,而且每增加一维所需的样本个数呈指数级增长,这可能会直接带来极大的「维数灾难」 ;而数据降维就可以实现:

  • 使得数据集更易使用

  • 确保变量之间彼此独立

  • 降低算法计算运算成本

去除噪音一旦我们能够正确处理这些信息,正确有效地进行降维,这将大大有助于减少计算量,进而提高机器运作效率。而数据降维,也常应用于文本处理、人脸识别、图片识别、自然语言处理等领域。

数据降维原理

往往高维空间的数据会出现分布稀疏的情况,所以在降维处理的过程中,我们通常会做一些数据删减,这些数据包括了冗余的数据、无效信息、重复表达内容等。

例如:现有一张 1024*1024 的图,除去中心 50*50 的区域其它位置均为零值,这些为零的信息就可以归为无用信息;而对于对称图形而言,对称部分的信息则可以归为重复信息。

因此,大部分经典降维技术也是基于这一内容而展开,其中降维方法又分为线性和非线性降维,非线性降维又分为基于核函数和基于特征值的方法。

1.线性降维方法

  • PCA 、ICA LDA、LFA、LPP(LE的线性表示)

2.非线性降维方法

  • 基于核函数的非线性降维方法——KPCA 、KICA、KDA

  • 基于特征值的非线性降维方法(流型学习)——ISOMAP、LLE、LE、LPP、LTSA、MVU

在我的Github中我已经搜集整理了 PCA、KPCA、LDA、MDS、ISOMAP、LLE、TSNE、AutoEncoder、FastICA、SVD、LE、LPP 共 12 种经典的降维算法,并提供了相关资料、代码以及展示。