当你的贪吃蛇吃满屏幕后...

Oct 21, 2019

注意:curses库在windows可以安装但还是有许多问题,建议在linux和mac下运行代码!

怎么样运行代码?

1
python snake.py

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
# coding: utf-8

import curses
from curses import KEY_RIGHT, KEY_LEFT, KEY_UP, KEY_DOWN
from random import randint

# 蛇运动的场地长宽
HEIGHT = 10
WIDTH = 20
FIELD_SIZE = HEIGHT * WIDTH

# 蛇头总是位于snake数组的第一个元素
HEAD = 0

# 用来代表不同东西的数字,由于矩阵上每个格子会处理成到达食物的路径长度,
# 因此这三个变量间需要有足够大的间隔(>HEIGHT*WIDTH)
FOOD = 0
UNDEFINED = (HEIGHT + 1) * (WIDTH + 1)
SNAKE = 2 * UNDEFINED

# 由于snake是一维数组,所以对应元素直接加上以下值就表示向四个方向移动
LEFT = -1
RIGHT = 1
UP = -WIDTH
DOWN = WIDTH

# 错误码
ERR = -1111

# 用一维数组来表示二维的东西
# board表示蛇运动的矩形场地
# 初始化蛇头在(1,1)的地方,第0行,HEIGHT行,第0列,WIDTH列为围墙,不可用
# 初始蛇长度为1
board = [0] * FIELD_SIZE
snake = [0] * (FIELD_SIZE+1)
snake[HEAD] = 1*WIDTH+1
snake_size = 1
# 与上面变量对应的临时变量,蛇试探性地移动时使用
tmpboard = [0] * FIELD_SIZE
tmpsnake = [0] * (FIELD_SIZE+1)
tmpsnake[HEAD] = 1*WIDTH+1
tmpsnake_size = 1

# food:食物位置(0~FIELD_SIZE-1),初始在(3, 3)
# best_move: 运动方向
food = 3 * WIDTH + 3
best_move = ERR

# 运动方向数组
mov = [LEFT, RIGHT, UP, DOWN]
# 接收到的键 和 分数
key = KEY_RIGHT
score = 1 #分数也表示蛇长

# 检查一个cell有没有被蛇身覆盖,没有覆盖则为free,返回true
def is_cell_free(idx, psize, psnake):
#return not (idx in psnake[:]) #错!psnake后面还有很多没用上的单元
for i in xrange(psize):
if idx == psnake[i]: return False
return True


# 检查某个位置idx是否可向move方向运动
def is_move_possible(idx, move):
flag = False
if move == LEFT:
flag = True if idx%WIDTH > 1 else False
elif move == RIGHT:
flag = True if idx%WIDTH < (WIDTH-2) else False
elif move == UP:
flag = True if idx > (2*WIDTH-1) else False # 即idx/WIDTH > 1
elif move == DOWN:
flag = True if idx < (FIELD_SIZE-2*WIDTH) else False # 即idx/WIDTH < HEIGHT-2
return flag
# 重置board
# board_refresh后,UNDEFINED值都变为了到达食物的路径长度
# 如需要还原,则要重置它
def board_reset(psnake, psize, pboard):
for i in xrange(FIELD_SIZE):
# f.write('hello ' + str(len(pboard)) +' ' +str(i)+'\n')
if i == food:
pboard[i] = FOOD
elif is_cell_free(i, psize, psnake): # 该位置为空
pboard[i] = UNDEFINED
else: # 该位置为蛇身
pboard[i] = SNAKE

# def board_refresh(pfood, psnake, pboard):
# board_changed = True
# found = False
# while board_changed: # 一直更新board,直到每个格子上的数都对应到达食物的步数,不能再改变为止
# board_changed = False
# for i in xrange(FIELD_SIZE):
# if pboard[i] < SNAKE:
# min = pboard[i]
# for j in xrange(4):
# if is_move_possible(i, mov[j]) and pboard[i+mov[j]] < min:
# min = pboard[i+mov[j]]
# if pboard[i] > min+1:
# pboard[i] = min + 1
# board_changed = True

# if ~board_changed: break # 不再改变,退出
# board_changed = False

# for i in xrange(FIELD_SIZE-1, -1, -1): # [FIELD_SIZE-1, 0]
# if pboard[i] < SNAKE:
# min = pboard[i]
# for j in xrange(4):
# if is_move_possible(i, mov[j]) and pboard[i+mov[j]] < min:
# min = pboard[i+mov[j]]
# if pboard[i] > min+1:
# pboard[i] = min + 1
# board_changed = True
# for i in xrange(4):
# if is_move_possible(psnake[HEAD], mov[i]) and pboard[psnake[HEAD]+mov[i]]<UNDEFINED:
# flag = True

# return flag

# 广度优先搜索遍历整个board,
# 计算出board中每个非SNAKE元素到达食物的路径长度
def board_refresh(pfood, psnake, pboard):
queue = []
queue.append(pfood)
inqueue = [0] * FIELD_SIZE
found = False
# while循环结束后,除了蛇的身体,
# 其它每个方格中的数字代码从它到食物的路径长度
#f.write('bfs begin:\n')
while len(queue)!=0:
idx = queue.pop(0)
if inqueue[idx] == 1: continue
#f.write(str(idx)+'\n')
inqueue[idx] = 1
for i in xrange(4):
if is_move_possible(idx, mov[i]):
if idx + mov[i] == psnake[HEAD]:
found = True
if pboard[idx+mov[i]] < SNAKE: # 如果该点不是蛇的身体

if pboard[idx+mov[i]] > pboard[idx]+1:
pboard[idx+mov[i]] = pboard[idx] + 1
if inqueue[idx+mov[i]] == 0:
queue.append(idx+mov[i])

#f.write('bfs end\n')
#f.write('found: ' + str(found) +'\n')
return found

# 从蛇头开始,根据board中元素值,
# 从蛇头周围4个领域点中选择最短路径
def choose_shortest_safe_move(psnake, pboard):
best_move = ERR
min = SNAKE
for i in xrange(4):
if is_move_possible(psnake[HEAD], mov[i]) and pboard[psnake[HEAD]+mov[i]]<min:
min = pboard[psnake[HEAD]+mov[i]]
best_move = mov[i]
return best_move

# 从蛇头开始,根据board中元素值,
# 从蛇头周围4个领域点中选择最远路径
def choose_longest_safe_move(psnake, pboard):
best_move = ERR
max = -1
for i in xrange(4):
if is_move_possible(psnake[HEAD], mov[i]) and pboard[psnake[HEAD]+mov[i]]<UNDEFINED and pboard[psnake[HEAD]+mov[i]]>max:
max = pboard[psnake[HEAD]+mov[i]]
best_move = mov[i]
return best_move

# 检查是否可以追着蛇尾运动,即蛇头和蛇尾间是有路径的
# 为的是避免蛇头陷入死路
# 虚拟操作,在tmpboard,tmpsnake中进行
def is_tail_inside():
global tmpboard, tmpsnake, food, tmpsnake_size
tmpboard[tmpsnake[tmpsnake_size-1]] = 0 # 虚拟地将蛇尾变为食物(因为是虚拟的,所以在tmpsnake,tmpboard中进行)
tmpboard[food] = SNAKE # 放置食物的地方,看成蛇身
result = board_refresh(tmpsnake[tmpsnake_size-1], tmpsnake, tmpboard) # 求得每个位置到蛇尾的路径长度
for i in xrange(4): # 如果蛇头和蛇尾紧挨着,则返回False。即不能follow_tail,追着蛇尾运动了
if is_move_possible(tmpsnake[HEAD], mov[i]) and tmpsnake[HEAD]+mov[i]==tmpsnake[tmpsnake_size-1] and tmpsnake_size>3:
result = False
return result

# 让蛇头朝着蛇尾运行一步
# 不管蛇身阻挡,朝蛇尾方向运行
def follow_tail():
global tmpboard, tmpsnake, food, tmpsnake_size
tmpsnake_size = snake_size
tmpsnake = snake[:]
board_reset(tmpsnake, tmpsnake_size, tmpboard) # 重置虚拟board
tmpboard[tmpsnake[tmpsnake_size-1]] = FOOD # 让蛇尾成为食物
tmpboard[food] = SNAKE # 让食物的地方变成蛇身
board_refresh(tmpsnake[tmpsnake_size-1], tmpsnake, tmpboard) # 求得各个位置到达蛇尾的路径长度
tmpboard[tmpsnake[tmpsnake_size-1]] = SNAKE # 还原蛇尾

# return choose_longest_safe_move(tmpsnake, tmpboard) # 返回运行方向(让蛇头运动1步)
return choose_longest_safe_move(tmpsnake, tmpboard)

# 在各种方案都不行时,随便找一个可行的方向来走(1步),
def any_possible_move():
global food , snake, snake_size, board
best_move = ERR
board_reset(snake, snake_size, board)
board_refresh(food, snake, board)
min = SNAKE

for i in xrange(4):
if is_move_possible(snake[HEAD], mov[i]) and board[snake[HEAD]+mov[i]]<min:
min = board[snake[HEAD]+mov[i]]
best_move = mov[i]
return best_move

def shift_array(arr, size):
for i in xrange(size, 0, -1):
arr[i] = arr[i-1]

def new_food():
global food, snake_size
if snake_size >= FIELD_SIZE-1: return
cell_free = False
while not cell_free:
w = randint(1, WIDTH-2)
h = randint(1, HEIGHT-2)
food = h * WIDTH + w
cell_free = is_cell_free(food, snake_size, snake)
win.addch(food/WIDTH, food%WIDTH, '@')

# 真正的蛇在这个函数中,朝pbest_move走1步
def make_move(pbest_move):
global key, snake, board, snake_size, score
shift_array(snake, snake_size)
snake[HEAD] += pbest_move


# 按esc退出,getch同时保证绘图的流畅性,没有它只会看到最终结果
win.timeout(10)
event = win.getch()
key = key if event == -1 else event
if key == 27: return

p = snake[HEAD]
win.addch(p/WIDTH, p%WIDTH, '*')


# 如果新加入的蛇头就是食物的位置
# 蛇长加1,产生新的食物,重置board(因为原来那些路径长度已经用不上了)
if snake[HEAD] == food:
board[snake[HEAD]] = SNAKE # 新的蛇头
snake_size += 1
score += 1
if snake_size < FIELD_SIZE: new_food()
#board_reset(snake, board) #
#return True
else: # 如果新加入的蛇头不是食物的位置
board[snake[HEAD]] = SNAKE # 新的蛇头
board[snake[snake_size]] = UNDEFINED # 蛇尾变为空格
win.addch(snake[snake_size]/WIDTH, snake[snake_size]%WIDTH, ' ')
#return False
# test 打印tmpboard
for i in xrange(HEIGHT):
for j in xrange(WIDTH):
k = board[i*WIDTH+j]
f.write(str(k)+' ')
f.write('\n')
# print symbol
for i in xrange(HEIGHT):
for j in xrange(WIDTH):
k = board[i*WIDTH+j]
if k == UNDEFINED:
f.write('# ')
elif k == SNAKE:
if i*WIDTH+j == snake[HEAD]:
f.write('+ ') # 蛇头
elif i*WIDTH+j == snake[snake_size-1]:
f.write('- ') # 蛇尾
else:
f.write('* ')
else:
f.write(str(k)+' ')
f.write('\n')
f.write('\n')

# 虚拟地运行一次,然后在调用处检查这次运行可否可行
# 可行才真实运行。
# 虚拟运行吃到食物后,得到虚拟下蛇在board的位置
def virtual_shortest_move():
global snake, board, snake_size, tmpsnake, tmpboard, tmpsnake_size, food
#f.write('i am in virtual\n')
tmpsnake_size = snake_size
tmpsnake = snake[:] # 如果直接tmpsnake=snake,则两者指向同一处内存
tmpboard = board[:] # board中已经是各位置到达食物的路径长度了,不用再计算
board_reset(tmpsnake, tmpsnake_size, tmpboard)


# test 打印tmpboard
# for i in xrange(HEIGHT):
# for j in xrange(WIDTH):
# k = tmpboard[i*WIDTH+j]
# f.write(str(k)+' ')
# f.write('\n')

food_eated = False
while not food_eated:
board_refresh(food, tmpsnake, tmpboard)
move = choose_shortest_safe_move(tmpsnake, tmpboard)
shift_array(tmpsnake, tmpsnake_size)
tmpsnake[HEAD] += move # 在蛇头前加入一个新的位置
#f.write('snake head: '+str(tmpsnake[HEAD])+'\n')
# 如果新加入的蛇头的位置正好是食物的位置
# 则长度加1,重置board,食物那个位置变为蛇的一部分(SNAKE)
if tmpsnake[HEAD] == food:
tmpsnake_size += 1
board_reset(tmpsnake, tmpsnake_size, tmpboard) # 虚拟运行后,蛇在board的位置(label101010)
tmpboard[food] = SNAKE
food_eated = True
else: # 如果蛇头不是食物的位置,则新加入的位置为蛇头,最后一个变为空格
tmpboard[tmpsnake[HEAD]] = SNAKE
tmpboard[tmpsnake[tmpsnake_size]] = UNDEFINED
#f.write('i am out virtual\n')

# 如果蛇与食物间有路径,则调用本函数
def find_safe_way():
global snake, board
safe_move = ERR
# 虚拟地运行一次,因为已经确保蛇与食物间有路径,所以执行有效
# 运行后得到虚拟下蛇在board中的位置,即tmpboard,见label101010
virtual_shortest_move() # 该函数唯一调用处
if is_tail_inside(): # 如果虚拟运行后,蛇头蛇尾间有通路,则选最短路运行(1步)
return choose_shortest_safe_move(snake, board)
safe_move = follow_tail() # 否则虚拟地follow_tail 1步,如果可以做到,返回true
return safe_move


curses.initscr()
win = curses.newwin(HEIGHT, WIDTH, 0, 0)
win.keypad(1)
curses.noecho()
curses.curs_set(0)
win.border(0)
win.nodelay(1)
win.addch(food/WIDTH, food%WIDTH, '@')

f = file('log', 'w')

while key != 27:
win.border(0)
win.addstr(0, 2, 's:' + str(score) + ' ')
#win.addstr(0, WIDTH/2-3, ' SNAKE ')
win.timeout(10)
# 接收键盘输入,同时也使显示流畅
event = win.getch()
key = key if event == -1 else event
if snake_size >= FIELD_SIZE: continue
# 重置矩阵
board_reset(snake, snake_size, board)

# 如果蛇可以吃到食物,board_refresh返回true
# 并且board中除了蛇身(=SNAKE),其它的元素值表示从该点运动到食物的最短路径长
if board_refresh(food, snake, board):
best_move = find_safe_way() # find_safe_way的唯一调用处
f.write('find safe way: ' + str(best_move) + '\n')
else:
best_move = follow_tail()
f.write('follow tail: ' + str(best_move) +'\n')

if best_move == ERR:
best_move = any_possible_move()
f.write('any possible move: ' + str(best_move) + '\n')
# 上面一次思考,只得出一个方向,运行一步
if best_move != ERR: make_move(best_move)
else: break

f.close()
curses.endwin()
print("\nScore - " + str(score))
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# coding: utf-8

import curses
from curses import KEY_RIGHT, KEY_LEFT, KEY_UP, KEY_DOWN
from random import randint

# 蛇运动的场地长宽
HEIGHT = 10
WIDTH = 20
FIELD_SIZE = HEIGHT * WIDTH

# 蛇头总是位于snake数组的第一个元素
HEAD = 0

# 用来代表不同东西的数字,由于矩阵上每个格子会处理成到达食物的路径长度,
# 因此这三个变量间需要有足够大的间隔(>HEIGHT*WIDTH)
FOOD = 0
UNDEFINED = (HEIGHT + 1) * (WIDTH + 1)
SNAKE = 2 * UNDEFINED

# 由于snake是一维数组,所以对应元素直接加上以下值就表示向四个方向移动
LEFT = -1
RIGHT = 1
UP = -WIDTH
DOWN = WIDTH

# 错误码
ERR = -1111

# 用一维数组来表示二维的东西
# board表示蛇运动的矩形场地
# 初始化蛇头在(1,1)的地方,第0行,HEIGHT行,第0列,WIDTH列为围墙,不可用
# 初始蛇长度为1
board = [0] * FIELD_SIZE
snake = [0] * (FIELD_SIZE+1)
snake[HEAD] = 1*WIDTH+1
snake_size = 1
# 与上面变量对应的临时变量,蛇试探性地移动时使用
tmpboard = [0] * FIELD_SIZE
tmpsnake = [0] * (FIELD_SIZE+1)
tmpsnake[HEAD] = 1*WIDTH+1
tmpsnake_size = 1

# food:食物位置(0~FIELD_SIZE-1),初始在(3, 3)
# best_move: 运动方向
food = 3 * WIDTH + 3
best_move = ERR

# 运动方向数组
mov = [LEFT, RIGHT, UP, DOWN]
# 接收到的键 和 分数
key = KEY_RIGHT
score = 1 #分数也表示蛇长

# 检查一个cell有没有被蛇身覆盖,没有覆盖则为free,返回true
def is_cell_free(idx, psize, psnake):
return not (idx in psnake[:psize])

# 检查某个位置idx是否可向move方向运动
def is_move_possible(idx, move):
flag = False
if move == LEFT:
flag = True if idx%WIDTH > 1 else False
elif move == RIGHT:
flag = True if idx%WIDTH < (WIDTH-2) else False
elif move == UP:
flag = True if idx > (2*WIDTH-1) else False # 即idx/WIDTH > 1
elif move == DOWN:
flag = True if idx < (FIELD_SIZE-2*WIDTH) else False # 即idx/WIDTH < HEIGHT-2
return flag
# 重置board
# board_refresh后,UNDEFINED值都变为了到达食物的路径长度
# 如需要还原,则要重置它
def board_reset(psnake, psize, pboard):
for i in xrange(FIELD_SIZE):
if i == food:
pboard[i] = FOOD
elif is_cell_free(i, psize, psnake): # 该位置为空
pboard[i] = UNDEFINED
else: # 该位置为蛇身
pboard[i] = SNAKE

# 广度优先搜索遍历整个board,
# 计算出board中每个非SNAKE元素到达食物的路径长度
def board_refresh(pfood, psnake, pboard):
queue = []
queue.append(pfood)
inqueue = [0] * FIELD_SIZE
found = False
# while循环结束后,除了蛇的身体,
# 其它每个方格中的数字代码从它到食物的路径长度
while len(queue)!=0:
idx = queue.pop(0)
if inqueue[idx] == 1: continue
inqueue[idx] = 1
for i in xrange(4):
if is_move_possible(idx, mov[i]):
if idx + mov[i] == psnake[HEAD]:
found = True
if pboard[idx+mov[i]] < SNAKE: # 如果该点不是蛇的身体

if pboard[idx+mov[i]] > pboard[idx]+1:
pboard[idx+mov[i]] = pboard[idx] + 1
if inqueue[idx+mov[i]] == 0:
queue.append(idx+mov[i])

return found

# 从蛇头开始,根据board中元素值,
# 从蛇头周围4个领域点中选择最短路径
def choose_shortest_safe_move(psnake, pboard):
best_move = ERR
min = SNAKE
for i in xrange(4):
if is_move_possible(psnake[HEAD], mov[i]) and pboard[psnake[HEAD]+mov[i]]<min:
min = pboard[psnake[HEAD]+mov[i]]
best_move = mov[i]
return best_move

# 从蛇头开始,根据board中元素值,
# 从蛇头周围4个领域点中选择最远路径
def choose_longest_safe_move(psnake, pboard):
best_move = ERR
max = -1
for i in xrange(4):
if is_move_possible(psnake[HEAD], mov[i]) and pboard[psnake[HEAD]+mov[i]]<UNDEFINED and pboard[psnake[HEAD]+mov[i]]>max:
max = pboard[psnake[HEAD]+mov[i]]
best_move = mov[i]
return best_move

# 检查是否可以追着蛇尾运动,即蛇头和蛇尾间是有路径的
# 为的是避免蛇头陷入死路
# 虚拟操作,在tmpboard,tmpsnake中进行
def is_tail_inside():
global tmpboard, tmpsnake, food, tmpsnake_size
tmpboard[tmpsnake[tmpsnake_size-1]] = 0 # 虚拟地将蛇尾变为食物(因为是虚拟的,所以在tmpsnake,tmpboard中进行)
tmpboard[food] = SNAKE # 放置食物的地方,看成蛇身
result = board_refresh(tmpsnake[tmpsnake_size-1], tmpsnake, tmpboard) # 求得每个位置到蛇尾的路径长度
for i in xrange(4): # 如果蛇头和蛇尾紧挨着,则返回False。即不能follow_tail,追着蛇尾运动了
if is_move_possible(tmpsnake[HEAD], mov[i]) and tmpsnake[HEAD]+mov[i]==tmpsnake[tmpsnake_size-1] and tmpsnake_size>3:
result = False
return result

# 让蛇头朝着蛇尾运行一步
# 不管蛇身阻挡,朝蛇尾方向运行
def follow_tail():
global tmpboard, tmpsnake, food, tmpsnake_size
tmpsnake_size = snake_size
tmpsnake = snake[:]
board_reset(tmpsnake, tmpsnake_size, tmpboard) # 重置虚拟board
tmpboard[tmpsnake[tmpsnake_size-1]] = FOOD # 让蛇尾成为食物
tmpboard[food] = SNAKE # 让食物的地方变成蛇身
board_refresh(tmpsnake[tmpsnake_size-1], tmpsnake, tmpboard) # 求得各个位置到达蛇尾的路径长度
tmpboard[tmpsnake[tmpsnake_size-1]] = SNAKE # 还原蛇尾

return choose_longest_safe_move(tmpsnake, tmpboard) # 返回运行方向(让蛇头运动1步)

# 在各种方案都不行时,随便找一个可行的方向来走(1步),
def any_possible_move():
global food , snake, snake_size, board
best_move = ERR
board_reset(snake, snake_size, board)
board_refresh(food, snake, board)
min = SNAKE

for i in xrange(4):
if is_move_possible(snake[HEAD], mov[i]) and board[snake[HEAD]+mov[i]]<min:
min = board[snake[HEAD]+mov[i]]
best_move = mov[i]
return best_move

def shift_array(arr, size):
for i in xrange(size, 0, -1):
arr[i] = arr[i-1]

def new_food():
global food, snake_size
cell_free = False
while not cell_free:
w = randint(1, WIDTH-2)
h = randint(1, HEIGHT-2)
food = h * WIDTH + w
cell_free = is_cell_free(food, snake_size, snake)
win.addch(food/WIDTH, food%WIDTH, '@')

# 真正的蛇在这个函数中,朝pbest_move走1步
def make_move(pbest_move):
global key, snake, board, snake_size, score
shift_array(snake, snake_size)
snake[HEAD] += pbest_move


# 按esc退出,getch同时保证绘图的流畅性,没有它只会看到最终结果
win.timeout(10)
event = win.getch()
key = key if event == -1 else event
if key == 27: return

p = snake[HEAD]
win.addch(p/WIDTH, p%WIDTH, '*')


# 如果新加入的蛇头就是食物的位置
# 蛇长加1,产生新的食物,重置board(因为原来那些路径长度已经用不上了)
if snake[HEAD] == food:
board[snake[HEAD]] = SNAKE # 新的蛇头
snake_size += 1
score += 1
if snake_size < FIELD_SIZE: new_food()
else: # 如果新加入的蛇头不是食物的位置
board[snake[HEAD]] = SNAKE # 新的蛇头
board[snake[snake_size]] = UNDEFINED # 蛇尾变为空格
win.addch(snake[snake_size]/WIDTH, snake[snake_size]%WIDTH, ' ')

# 虚拟地运行一次,然后在调用处检查这次运行可否可行
# 可行才真实运行。
# 虚拟运行吃到食物后,得到虚拟下蛇在board的位置
def virtual_shortest_move():
global snake, board, snake_size, tmpsnake, tmpboard, tmpsnake_size, food
tmpsnake_size = snake_size
tmpsnake = snake[:] # 如果直接tmpsnake=snake,则两者指向同一处内存
tmpboard = board[:] # board中已经是各位置到达食物的路径长度了,不用再计算
board_reset(tmpsnake, tmpsnake_size, tmpboard)

food_eated = False
while not food_eated:
board_refresh(food, tmpsnake, tmpboard)
move = choose_shortest_safe_move(tmpsnake, tmpboard)
shift_array(tmpsnake, tmpsnake_size)
tmpsnake[HEAD] += move # 在蛇头前加入一个新的位置
# 如果新加入的蛇头的位置正好是食物的位置
# 则长度加1,重置board,食物那个位置变为蛇的一部分(SNAKE)
if tmpsnake[HEAD] == food:
tmpsnake_size += 1
board_reset(tmpsnake, tmpsnake_size, tmpboard) # 虚拟运行后,蛇在board的位置(label101010)
tmpboard[food] = SNAKE
food_eated = True
else: # 如果蛇头不是食物的位置,则新加入的位置为蛇头,最后一个变为空格
tmpboard[tmpsnake[HEAD]] = SNAKE
tmpboard[tmpsnake[tmpsnake_size]] = UNDEFINED

# 如果蛇与食物间有路径,则调用本函数
def find_safe_way():
global snake, board
safe_move = ERR
# 虚拟地运行一次,因为已经确保蛇与食物间有路径,所以执行有效
# 运行后得到虚拟下蛇在board中的位置,即tmpboard,见label101010
virtual_shortest_move() # 该函数唯一调用处
if is_tail_inside(): # 如果虚拟运行后,蛇头蛇尾间有通路,则选最短路运行(1步)
return choose_shortest_safe_move(snake, board)
safe_move = follow_tail() # 否则虚拟地follow_tail 1步,如果可以做到,返回true
return safe_move


curses.initscr()
win = curses.newwin(HEIGHT, WIDTH, 0, 0)
win.keypad(1)
curses.noecho()
curses.curs_set(0)
win.border(0)
win.nodelay(1)
win.addch(food/WIDTH, food%WIDTH, '@')


while key != 27:
win.border(0)
win.addstr(0, 2, 'S:' + str(score) + ' ')
win.timeout(10)
# 接收键盘输入,同时也使显示流畅
event = win.getch()
key = key if event == -1 else event
# 重置矩阵
board_reset(snake, snake_size, board)

# 如果蛇可以吃到食物,board_refresh返回true
# 并且board中除了蛇身(=SNAKE),其它的元素值表示从该点运动到食物的最短路径长
if board_refresh(food, snake, board):
best_move = find_safe_way() # find_safe_way的唯一调用处
else:
best_move = follow_tail()

if best_move == ERR:
best_move = any_possible_move()
# 上面一次思考,只得出一个方向,运行一步
if best_move != ERR: make_move(best_move)
else: break

curses.endwin()
print("\nScore - " + str(score))